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Abstract

The present paper discusses the importance of interpreting both

regression coefficients and structure coefficients when analyzing

the results of multiple regression analysis, particularly with

correlated predictor variables. The concepts of multicollinearity

and suppressor effects are introduced, along with examples from the

previously published articles that demonstrate how erroneous

conclusions are drawn when researchers fail to consult both beta

weights and structure coefficients (or both beta weights and zero-

order correlations).
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Roughly a dozen years ago, Jacob Cohen (1988), a preeminent

author, critic, and research methodologist in the behavioral

sciences, declared that:

During the past decade, under the impetus of the

computer revolution and increasing sophistication in

statistics and research design among behavioral

scientists, multiple regression and correlation

analysis (MRC) has come to be understood as an

exceedingly flexible data analytic procedure

remarkably suited to the variety and types of

problems encountered in behavioral research. (p.

407)

Fifteen years earlier, Kerlinger and Pedhazur (1973)

enthusiastically endorsed multiple regression:

It is a powerful analytic tool widely applicable to

many different kinds of research problems. It can be

used effectively in sociological, psychological,

economic, political, and educational research. It

can handle continuous and categorical variables. In

principle, the analysis is the same. Finally, as we

will abundantly show, multiple regression can do

anything the analysis of variance does--sums of

squares, mean squares, F ratios--and more. (pp. 2-3)

Unlike ANOVA, there are no constraints on the types of independent

variables one can employ when utilizing multiple regression.

Regression can be used when the predictor variables are correlated
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or uncorrelated, continuous or nominal.

Given the prominent role that regression should and does have

in the behavioral sciences (cf. Elmore & Woehlke, 1988; Willson,

1980), the purpose of the present paper is to argue the importance

of interpreting both regression coefficients and structure

coefficients when analyzing the results from multiple regression

analysis, particularly with correlated predictor variables. First,

the General Linear Model (GLM) is introduced as a framework for the

remaining discussion. Second, the bivariate and the multiple

regression model is introduced. Third, the use structure

coefficients as an interpretation aid is described.

Fourth, the relative interpretive values of beta weights and

structure coefficients are explored. Fifth, a case is made that

both sets of coefficients usually must be interpreted (Heidgerken,

1999). Finally, published examples of both correct and incorrect

interpretations of regression results, based on what coefficients

were interpreted, are cited.

The General Linear Model (GLM)

Three Levels of the General Linear Model

Multiple regression is related to all other parametric

analyses via the General Linear Model (GLM) (Baggaley, 1981). Cohen

(1968) noted that while linear multiple regression analysis

subsumes all univariate parametric methods (e.g., t test, ANOVA,

ANCOVA, r) as special cases, multiple regression has practical

advantages:

The practical advantages of MR (multiple regression)
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...will be seen to constitute a very flexible

general system for the analysis of data in the most

frequently arising circumstance, namely, where an

interval scaled or dichotomous (dependent) variable

is to be "understood" in terms of other

(independent) variables, however scaled. (p. 427)

Knapp (1978) extended Cohen's arguments by showing that all

common parametric tests of statistical significance (all the

parametric univariate methods, the chi-square test of independence

of two variables, and MANOVA, MANCOVA, and descriptive discriminant

analysis [Huberty, 1994]) can all be treated as special cases of

canonical correlation analysis, which is the general procedure for

investigating the relationships between two sets of variables. Then

Bagozzi, Fornell, and Larcker (1981) noted that all univariate and

multivariate statistical methods are subsumed by the most general

case of the General Linear Model: structural equation modeling

(SEM), which has more utility in direct theory testing than

canonical correlation analysis, and also directly incorporates

measurement integrity as part of estimation (Thompson, in press).

Specifically, canonical correlation analysis cannot determine

the statistical significance of individual parameter estimates or

relax selective assumptions of the canonical model based on theory

or observed data. SEM is a more flexible tool for data analysis and

the problem of determining statistical significance of each

parameter estimate is overcome by using estimated standard errors

to calculate "critical ratios" (or t's) for the evaluation of



Structure Coefficients -6-

individual weights and covariances.

Weights as a Common Feature of all GLM Methods

One aspect of the General Linear Model is that all classical

univariate and multivariate tests share in common the application

of weights to the measured/observed variables to estimate each

person's score on each synthetic/latent variable.

As conventional parametric methods are all

correlational least square analyses, all such

analyses involve weights similar to the beta weights

generated in regression. These weights are all

analogous, but are given different names in

different analyses (beta weights in regression,

pattern coefficients in factor analysis,

discriminant functions coefficients in discriminant

analysis), mainly to obfuscate the commonalities of

all parametric methods, and to confuse graduate

students. (Thompson, 1992a, pp. 906-907)

In regression in particular, the independent or predictor

variables are differentially weighted using "unstandardized

weights" or "standardized weights" so that the correlation between

the composite scores thus obtained and the measured dependent

variable, or the criterion, is maximized (Pedhazur, 1997). Using

the regression equation and scores on the independent variables,

one can calculate each person's score on the latent composite

variable.

When the multiplicative weights are applied to the predictor
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variables converted to standard score form, the "standardized"

weights are called beta (/3) weights. [In actuality, the weights as

multiplicative constants cannot be standardized, and are called

this only because they are applied to the measured predictor

variables themselves in standard score form.] When the weights are

applied to unstandardized predictor variables, they are called "b"

weights.

Multiple Correlation and Regression

Regression Weights

Bivariate linear regression using a single predictor variable

"X" and a single criterion "Y" can be extended to multiple

correlation and multiple linear regression (Hinkle, Wiersma & Jurs,

1998; Huberty & Petoskey, 1999). In multiple correlation, the

relationship between the criterion variable "Y" and the predictor

variables (X1, X2, ..., Xk) is determined, whereas in multiple

regression, scores on the criterion variable "Y" are predicted

using multiple predictors (X1, X2, ..., Xk). In bivariate linear

regression, a straight line is fit to the scatterplot of points;

the equation of this line, called the regression equation, has the

form Yhati = a + b(XO, where Yhati is the predicted value of the

criterion variable for a given X value on the predictor variable.

The regression coefficient, b, is the slope of the line, and the

regression additive constant, a, is the Y axis intercept of the

regression line.

In multiple linear regression, we again have a single

criterion variable "Y", but we have k predictor variables (i.e., k
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is greater than or equal to two). These predictor variables are

combined into an equation, called the multiple regression equation,

which can be used to predict scores on the criterion variable

(that;) from scores on the predictor variables (Xi's). The general

form of the equation is:

Yhat = b1X1 + b2X2 + bkXk + a,

where the b's are the "unstandardized" regression coefficients for

the respective predictor variables and a is the regression additive

constant. Note that in the two predictor variable case, for

example, when X1 and X2 are both equal to 0, or if both b weights

equal zero, the related Yhat; score equals the a weight.

Unfortunately, the b weights are jointly sensitive to (a) the

correlation of each predictor with Y, (b) the correlations among

the predictor variables, and (c) the variability of predictor

variables in relation to the dependent variable Y. Each of these

conditions create problems when interpreting b weights, because the

weights are confounded by these various influences. That is,

several measured predictor variables might all have b weights of

+2.0, but the weights might be due to very different combinations

of these three influences. This makes difficult or impossible the

interpretation of regression results based solely on examination of

"unstandardized" weights.

To resolve these difficulties, "standardized" regression

coefficients are usually computed to facilitate comparisons across

variables with different standard deviations, scales, or metrics.

The beta weights are computed using the formula:

9
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beta = b (SDx / SDy) .

The b and beta weights will be equal when (a) either is zero or (b)

the standard deviations of both variables are equal (Thompson,

1992b).

According to Cooley and Lohnes (1971), some researchers judge

the relative contributions of the predictors in the regression

equation based on the magnitudes of their respective beta weights.

They also pointed out a serious drawback to relying on beta weights

to interpret regression results:

Our tendency to de-emphasize the beta weights stems

from experience with the phenomenon of extreme

fluctuation of regression weights from sample to

sample when the sample size is small. Even when the

sample size is moderate, there is substantial

fluctuation. (p. 55)

The unwary researcher might be tempted to regard the predictor

variable having the beta weight with the largest absolute value as

the best predictor.

Most frequently, the interpretation of regression results

focuses on an evaluation of the beta (/3) weights because they are

not affected by variances (standard deviations) in the measured

variables. As a variable's beta weight deviates further from zero

in either a positive or negative direction, the predictor variable

is being assigned greater influence in determining the scores on

the latent criterion composite variable. Conversely, as a beta

weight approaches zero, the measured predictor variable is
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ostensibly less influential.

However, it is possible, as we shall see, for a predictor

variable to have a near-zero beta weight and to still have strong

predictive capability when the predictive power of that variable is

arbitrarily hidden for a given data set (as in the case of

multicollinearity between predictor variables). Furthermore, it is

also possible for a predictor that is perfectly uncorrelated with

the dependent variable and to have the largest beta weight for a

given analysis. Clearly, beta weights do not tell the whole story

for a given regression analysis!

Impacts of Collinearity on the Weights and Their Standard Errors

The condition of predictor variables being correlated with

each other is variously called multicollinearity, collinearity, or

ill conditioning. Belsley, Kuh, and Welsch (1980) noted that

multicollinearity presents both computational and statistical

problems:

Computationally, this means that solutions to a set

of least-squares normal equations (or, in general, a

solution to a system of linear equations) contains a

number of digits whose meaningfulness is limited by

the conditioning of the data... This computational

problem in the calculation of least-squares

estimates may be minimized, but never removed. The

intuitive distrust held by users of least squares of

estimates based on ill-conditioned data is therefore

justified... [because] statistically... collinearity
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causes the conditional variances [of the weights and

their standard errors) to be high. (pp. 114-115)

Additional problems with high collinearity between independent

variables identified by Pedhazur (1982) include: (a) imprecise

estimation of regression coefficients (beta weights) because slight

fluctuations due to sampling error or random error in the presence

of multicollinearity may lead to very large fluctuations in the

estimation of regression coefficients, and (b) even reversal of the

signs of regression coefficients.

Structure Coefficients as an Alternative Interpretation Aid

Definition and Calculation

Once composite predicted scores (YhatO are computed for all

participants, the correlation between each measured independent

variable and the latent/synthetic composite scores is referred to

as the structure coefficient (i.e., re), structure correlation, or

"loading". Pedhazur (1997) noted that the "squared structure

coefficient indicates the proportion of variance shared by the

variable with which it is associated and the vector of composite

scores" (p. 898). In regression one simple alternative way of

calculating structure coefficients is by using the formula:

rs = ru / R,

where the structure coefficient for independent variable x equals

the correlation between the dependent variable y and the predictor

x (i.e., the zero-order correlation) divided by the multiple

correlation of y with all of the independent variables as a group.

The GLM Perspective on Structure Coefficients

2
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It is intriguing that throughout the General Linear Model the

use of structure coefficients is heavily emphasized. As Thompson

and Borrello (1985) noted, this reality suggests the potential

importance of also interpreting structure coefficients when

evaluating regression results, insofar as regression is itself a

prominent member of the GLM family. In Huberty's (1994) words,

If a researcher is convinced that the use of

structure r's makes sense in, say, a canonical

correlation context, he or she would also advocate

the use of structure r's in the contexts of multiple

correlation, common factor analysis, and descriptive

discriminant analysis. (p. 263)

For example, as regards factor analysis, which is actually an

implicit part of canonical correlation analysis and all the

parametric methods subsumed by CCA (Thompson, 1984, pp. 11-16),

Gorsuch (1983) emphasized that a "basic matrix for interpreting the

factors is the factor structure" (p. 207, emphasis added).

Similarly, as regards descriptive discriminant analysis, Huberty

(1994) noted that "construct definition and structure dimension

[and not hit rates] constitute the focus of a descriptive

discriminant analysis" (p. 206, emphasis added).

And most researchers concur that the interpretation of

structure coefficients is essential to understanding canonical

results. As Meredith (1964, p. 55) suggested, "If the variables

within each set are moderately intercorrelated the possibility of

interpreting the canonical variates by inspection of the

3
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appropriate regression weights [function coefficients] is

practically nil." Levine (1977) was even more emphatic:

I specifically say that one has to do this

[interpret structure coefficients] since I firmly

believe as long as one wants information about the

nature of the canonical correlation relationship,

not merely the computation of the [synthetic

function] scores, one must have the structure

matrix. (p. 20, emphasis in original)

Interpretive Value of Weights and Structure Coefficients

Standardized Weights

The argument in favor of consulting standardized weights when

interpreting the origins of regression effects is that these

weights are used to create the composite scores actually correlated

in regression. That is, the bivariate r between the y and the Yhat

scores is the multiple R. A predictor with a multiplicative weight

of zero does not affect the computation of the latent Yhat scores,

and indeed is obliterated by the multiplicative constant of zero.

However, there are problems associated with solely interpreting the

weights.

No distinct range. As Thompson (1994) explained, "The beta

weights in a regression analysis are the correlation coefficients

between the respective predictors and the dependent variable only

when those predictors that are correlated with the dependent

variable are perfectly uncorrelated with each other" (p. 20). Thus,

whenever predictors are correlated, as is often the case in
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research modeling a reality in which many variables are somewhat

related to each other, the beta weights do not have a distinct

range. This means that the weights can only be interpreted in

relation to each other within a given study.

Not Measures of Relationship. Furthermore, it is clear that

when the predictors are correlated the "standardized" weights are

not correlation coefficients and absolutely may not be interpreted

as indices of the relationships of the predictors with the outcome

variable, notwithstanding the fact that exactly this

misinterpretation is frequently offered in the literature.

Regression weights are influenced by the relationships of the

predictor variables with y, but the weights as statistics do not

only evaluate these relationships, and therefore cannot correctly

be used as indices of relationship.

That is, a measured predictor variable with a negative

relationship with y (and thus a negative structure coefficient) may

have a negative /3 weight, but that same predictor may also have

either a zero or a positive 0 weight. Conversely, a measured

predictor variable with a positive relationship with y (and thus a

positive structure coefficient) may have a positive /3 weight, but

that same predictor may also have either a zero or a negative 0

weight. Finally, a predictor with a zero relationship with y (and

thus also a zero structure coefficient) may have a zero /3 weight,

but could also have either a positive or a negative /3 weight.

Context Dependence. Also, too few researchers appreciate the

fact that the regression weights may change radically with the
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deletion or the addition of even a single predictor variable. That

is, the values of the weights are highly context-dependent. As

Thompson (1999b) emphasized, "Any interpretations of weights must

be considered context-specific. Any change in the variables in the

model can radically alter all of the weights" (p. 48, emphasis in

original).

Put differently, the regression weights are correct only if

all the correct predictors are employed, and only the correct

predictors are employed. This means that the model is "correctly

specified." Unfortunately, as Pedhazur (1982) has noted, "The rub,

however, is that the true model is seldom, if ever, known" (p.

229). And as Duncan (3975) has noted, "Indeed it would require no

elaborate sophistry to show that we will never have the 'right'

model in any absolute sense" (p. 101).

Structure Coefficients

Cooley and Lohnes (1971) were early advocates for the

interpretation of structure coefficients in regression research.

Thorndike (1978) also pointed out the hazards of only interpreting

beta weights when reviewing the results of multiple regression

analyses:

It might be argued that the beta weights provide the

required information, but such is not the case. The

beta weights give us the relative contribution of

each variable to the variance of the composite, but

to the extent that the X variables are correlated,

the one with the larger correlation with the
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criterion will receive a large weight at the expense

of the other... [and] a description in terms of the

beta weights would give a false impression of the

relationship. Therefore, when description of the

composite of X variables is desired, it is necessary

to compute the correlations of the X variables with

the composite. (pp. 153-154)

Structure coefficients do have the advantage of having a

distinct potential range (i.e., from -1 to +1). And consultation of

these coefficients make sense, given the previous realization that

R is the bivariate r of y with Yhat. That is, given R focuses on

the Yhat scores, it makes sense to want to understand the

underlying structure of the latent variable. As Thompson (1999a)

recently noted, "the reason that structure coefficients are called

'structure' coefficients is that these coefficients provide insight

regarding what is the nature or structure of the underlying

synthetic variables of the actual research focus" (p. 15).

Disagreements in the Literature

However, there has not been unanimous agreement among

researchers on the utility of structure coefficients. For example,

Harris (1992) stated that structure coefficients can be potentially

misleading and argued that they should be abandoned in favor of

interpreting weights.

A somewhat different view was offered by Pedhazur (1982, p.

691), who noted that structure coefficients are "simply zero-order

correlations of independent variables with the dependent variable
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divided by a constant, namely, the multiple correlation

coefficient. Hence, the zero-order correlations provide the same

information." In response, Thompson and Borrello (1985) argued that

"the interpretation of only the bivariate correlations seems

counter-intuitive. It appears inconsistent to first declare

interest in an omnibus system of variables and then to consult

values that consider the variables only two at a time" (p. 208).

However, it is clear that interpretation of either (a) beta

weights and structure coefficients or (b) beta weights and the

zero-order correlations of the predictors with y will both yield

identical interpretations. The point is that beta weights alone

should not be the basis of interpretation, except when predictors

are perfectly uncorrelated, and thus each predictor's j3 equals its

r with y.

More recently, Pedhazur (1997) argued that "because one may

obtain large structure coefficients even when results [i.e., R2] are

meaningless, their use in such instances may lead to

misinterpretations" (p. 899). He then presented a hypothetical data

set involving an R2 of .00041, for which the rs for the first

predictor variable is .988. Pedhazur then noted that "These are

impressive coefficients, particularly the first one... But what is

not apparent from an examination of these coefficients is that they

were obtained from meaningless results" (p. 899).

This objection seems somewhat strange. As Thompson (1997)

explained,

All analyses are part of one general linear model
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(cf. Thompson, 1991). When interpreting results in

the context of this model, researchers should

generally approach the analysis hierarchically, by

asking two questions:

--Do I have anything? (Researchers decide this

question by looking at some combination of

statistical significance tests, effect

sizes..., and replicability evidence.)

--If I have something, where do my effects

originate? (Researchers often consult both the

standardized weights implicit in all analyses

and structure coefficients to decide this

question... (p. 31)

As Pedhazur himself acknowledged (p. 899) should done as regards

discriminant and canonical correlation analyses, in regression as

well one would only bother to examine the structure coefficients

after one has determined that the results are noteworthy. So, given

this hierarchical contingency-based approach to the interpretation

of GLM results, this criticism of Pedhazur (1997) seems irrelevant.

Thoughtful Resolution

As Figure 1 demonstrates, it is possible to have a predictor

variable with the greatest predictive potential (X2) lose credit to

two or more other predictors (XI and X3) whose predictive area

overlaps that of the first predictor. The X1 predictor may

arbitrarily be given no credit for its predictive potential and

could have a beta weight of zero. In such an instance, it is
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important to have information about the predictive potential of

that variable, information that is easily gained by examining each

predictor variable's structure coefficient.

Insert Figure 1 About Here.

In a dramatic example of how misleading the examination of

only regression coefficients can be in the case of collinearity,

Thompson and Borrello (1985) referred to a study (Borrello, 1984)

investigating the personality correlates of test-wise skills. The

researcher deliberately introduced collinearity into the study by

measuring some constructs repetitively. This "multi-

operationalization" is particularly appropriate in the social

because our measures of abstract constructs are so fallible.

As shown in Table 1, an examination of the beta weights alone

indicates that "Sensing" was the best predictor (/3 = -.310),

followed by "Thinking" ((3 = .193) and "Extravert" (/3 = .148).

However, an examination of the structure coefficients reveals an

altogether different story. "Sensing" was most correlated with the

Yhat variable (r8 = -.921), but "Intuition," the predictor variable

with the second highest absolute-value structure coefficient (r8 =

.783), had the third-most near-zero beta weight among the eight

predictor variables (beta = -.059)!

Insert Table 1 About Here.

As Thompson and Borrello (1985) emphasized:

A slight fluctuation in a few bivariate correlation

20
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coefficients could radically alter a beta weight for

a variable which is highly correlated with other

predictors and which is only slightly more

correlated with the criterion. If a variable's

slight advantage in predictive power involves

sampling or measurement error, then in subsequent

studies the variable's beta weight will be

dramatically closer to zero. Note, however, that the

structure coefficients for the variables,

"Intuition" (.783) and "Sensing" (-.921), suggest

that both variables are noteworthy predictors of

test-wiseness. (pp. 207-208)

Unlike beta weights, structure coefficients are unaffected by

multicollinearity and thus provide the researcher with different

information than beta weights. A predictor variable can have a

near-zero beta weight and still be a good predictor of the

criterion variable if the variance that the predictor could explain

is arbitrarily assigned to another predictor variable.

Of course, as pointed out earlier, the examination of beta

weights and structure coefficients is not an "either/or" question.

Both sets of results can be consulted to answer different

questions, as Thorndike (1978) pointed out. Indeed, it is only by

examining both coefficients that intriguing data dynamics can be

detected.

Examples from the Counseling Literature

Bowling (1993) reported that the Journal of Counseling

9 1
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Psychology published 20 articles that used multiple regression

analysis between January, 1990 and April, 1993. Of the 20 studies,

only three reported structure coefficients in their results and

only a few provided a correlation matrix that would allow an

ambitious researcher to derive them post facto. My more recent

review of articles published between January, 1996 and April, 1999

identified 22 articles using multiple regression. Clearly, the

popularity of this statistical technique has not waned in one of

the more prestigious counseling journals.

A Positive Example

The proper examination of both beta weights and structure

coefficients was demonstrated in a multiple regression design by

Longo, Lent, and Brown (1992) who examined the relationship between

social-cognitive variables and motivation to participate in

counseling. As shown in Table 2, an examination of beta weights

alone indicates that "Outcome expectations" is only a moderately

useful predictor of "Motivation" (0 = .26), and that two

predictors, "Self-efficacy" (0 = .43) and "Problem severity" (/3 =

.28) are assigned more credit for predicting variance in the

criterion variable than "Motivation".

Insert Table 2 About Here.

However, an examination of the structure coefficients reveals

that "Outcome expectations" has a very high structure coefficient

(r, = .90) and that this predictor alone accounts for 81% of the

total variance accounted for by all five predictors. The

22
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discrepancy is due to high multicollinearity between "Outcome

expectations" and three of the other four predictors, which were

arbitrarily assigned more credit for capacity to explain variance

in the criterion variable shared by the predictor variables.

In this study, the authors did not calculate the structure

coefficients, but correctly examined the zero-order correlations

between the predictor variables and took the high degree of

multicollinearity into account when interrupting their results

(Longo, Lent, & Brown, 1992): "Thus, despite the correlations

between self-efficacy and outcome beliefs, the former explained

somewhat more unique variance in motivation" (p. 450). As noted

earlier, the zero-order correlations between predictor variables

yield interpretations equivalent to those arising from structure

coefficients, although the two sets of coefficients are expressed

in a different metric (unless R = 1.0).

Example of Misinterpretation of Direct Effects

A recent article published in the American Journal of Family

Therapy (Larson & Wilson, 1998) shows that, despite warnings to the

contrary, leading counseling journals continue to publish studies

that do not examine structure coefficients or zero-order

correlations in addition to regression coefficients. Larson and

Wilson (1998) studied the role of early family-of-origin influences

on difficulties with later career decision-making. In the "Results"

section of their report, they concluded that "Intimidation, trait

anxiety, and class in college directly predicted career decision

problems (betas = .09, .40, and -.16, respectively)" (p. 45).

0 3
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Table 3 provides the beta weights as given in the study along

with structure coefficients not reported in the article but derived

here through supplemental analysis. Had structure coefficients been

interpreted in conjunction with regression coefficients, the

researchers might have noticed that in relation to other predictors

"Fusion" was substantially correlated with the Yhat variable, as

shown by this variable having the second-largest absolute value

among the eight structure coefficients. The near-zero beta weight

for "Fusion" ( -. 04) can therefore be assumed to be a consequence of

multicollinearity between the predictor variables in which the

other predictor variables were arbitrarily assigned credit for the

predictive power of "Fusion," not because "Fusion" is a useless

predictor.

Insert Table 3 About Here.

Example of Misinterpretation of Indirect or "Suppressor" Effects

A study completed by Denham and Burton (1996) is an excellent

example of failing to detect suppressor effects (Lancaster, 1999)

in predictor variables by neglecting to consult structure

coefficients in addition to beta weights. Suppressor variables are

good predictors that directly predict little or no variance in the

criterion variable, but which nonetheless indirectly improve

prediction by making the other predictors more effective (Horst,

1966).

In the study, the researchers concluded that the intervention

(/3 = .666) and the interaction between the intervention and pretest

n4
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= -.696) were the only statistically significant contributors to

teacher-rated competence, the criterion variable. Despite

presenting zero-order correlations (which are related to structure

coefficients) in the same table as the regression coefficients, the

correlations between predictors were not taken into account when

the results were interpreted. Had the researchers compared the beta

weights with the structure coefficients, as shown in Table 4, it

would have been apparent that the Intervention (0 = .666) and the

Intervention X Pretest (0 = -.696) were nearly pure suppressors

with large beta weights and near-zero structure coefficients (r, =

.04 and .02, respectively).

Insert Table 4 About Here.

In this case, these two predictor variables effectively

removed extraneous variance or improved other predictors without

directly accounting for variance in the criterion variable. In this

instance, the researchers erroneously attributed explained variance

to predictors that were almost completely uncorrelated with the

criterion variable, but that made other predictor variables better

by removing the bad variance in the other predictors!

Summary

It has been argued here that regression researchers frequently

encounter collinear predictor variables, because this situation

merely mirrors a reality in which predictors are often correlated,

and because researchers frequently intentionally select collinear

predictors in an effort to multi-operationalize fallible predictor
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variables. In these situations interpretations based solely on

consultation of "standardized" regression weights can lead to

grossly distorted conclusions. Examples from published literature

were cited to illustrate these disturbing and fully avoidable

occurrences of result misinterpretation.
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Table 1
Canonical Function and Standardized Regression (/3) Coefficients
Zero-order Correlations and Structure Coefficients

and

(1984).

Canonical
Predictor Function
Variable Coefficients r r,

Extravert -.371 X R = -.148 -.051 / R
Sensing -.776 X R = -.310 -.368 / R
Thinking -.484 X R = -.193 -.192 / R
Judging -.131 X R = -.052 -.117 / R
Introvert -.121 X R = -.048 -.052 / R
Intuition .149 X R = .059 .313 / R
Feeling -.275 X R = -.110 .108 / R
Perceiving -.215 X R = -.086 -.109 / R

= -.128
= -.922
= -.481
= -.293
= .130
= .784
= .271
= .273

Note. These data were adapted from Thompson and Borrello
.399.Decimals were rounded here to three places. R =

Table 2
Regression Coefficients, Zero-order Correlations, and Structure
Coefficients For Longo, Lent and Brown (1992)

Predictor 13 rxy r,

Gender .13 .28 .41
Problem severity .28 .31 .45
Counselor experience -.06 -.08 -.12
Self-efficacy .43 .53 .77
Outcome expectations .26 .62 .90

Note. R2 = .48; R = .69.

0 2
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Table 3
Regression Results for a Study Investigating Family of Origin
Influences on Career Decision Problems (Larson & Wilson, 1998)

Predictor r,

Gender -.17 -.15
Age .01 -.26
Income .06 .11
Class -.16 .34
Intimidation .09 .43
Fusion -.04 .51
Triangulation .07 .31
Anxiety .40 .85

Note. R2 = .22; R = .

Table 4
Prediction of Post-test Teacher-Rated Social Competence (Denham &
Burton, 1996)

Predictor r,

Intervention .666 .04
Age -.541 .42
Gender .544 .48
Pretest -.824 .78
Gender X Pretest -.424 .80
Intervention X Pretest -.696 .02
Age X Pretest 1.790 .78

Note. R2 = .291; R = .540.
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Figure 1

Venn Diagram for a Three Predictor Variable Regression Study
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